Grove - Thumb Joystick

Release date : 9/20/2015

Version : 1.0


## Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Sep 21, 2015</td>
<td>Victor.He</td>
<td>Create file</td>
</tr>
</tbody>
</table>
Contents

Document Revision History

1. Introduction
2. Features
3. Application ideas
4. Specifications
5. Usage
   5.1 With Arduino
   5.2 With Raspberry Pi
6. Resources
7. Support

2
3
4
5
6
7
10
11
Disclaimer
For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice.

Copyright
The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product.
Grove - Thumb Joystick is a Grove compatible module which is very similar to the 'analog' joystick on PS2 (PlayStation 2) controllers. The X and Y axes are two ~10k potentiometers which control 2D movement by generating analog signals. The joystick also has a push button that could be used for special applications. When the module is in working mode, it will output two analog values, representing two directions. Compared to a normal joystick, its output values are restricted to a smaller range (i.e. 200~800), only when being pressed that the X value will be set to 1023 and the MCU can detect the action of pressing.
2. Features

- Grove Interface
- 5V/3.3V Compatible
- Analog Output
3. Application ideas

- Game Controller
- Robot remote
### 4. Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Voltage</td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>Output Analog Value (X coordinate)</td>
<td>206</td>
<td>516</td>
<td>798</td>
<td>\</td>
</tr>
<tr>
<td>Output Analog Value (Y coordinate)</td>
<td>203</td>
<td>507</td>
<td>797</td>
<td>\</td>
</tr>
</tbody>
</table>
5. Usage

5.1 With Arduino

The Grove - Thumb Joystick is an analog device that outputs analog signal ranging from 0 to 1023. That requires us to use the analog port of Arduino to take the readings.

1. Connect the module to the A0/A1 of Grove - Basic Shield using the 4-pin grove cable.
2. Plug the Grove - Basic Shield into Arduino.
3. Connect Arduino to PC by using a USB cable.

4. Copy and paste code below to a new Arduino sketch. Please click here if you do not know how to upload.

```cpp
/*
   Thumb Joystick demo v1.0
   by:http://www.seeedstudio.com
   connect the module to A0&A1 for using;
*/

void setup() {
    Serial.begin(9600);
}

void loop() {
```
```cpp
int sensorValue1 = analogRead(A0);
int sensorValue2 = analogRead(A1);
Serial.print("The X and Y coordinate is:");
Serial.print(sensorValue1, DEC);
Serial.print(",");
Serial.println(sensorValue2, DEC);
Serial.println(" ");
delay(200);
```

5. You can check the values of the output analog signals by opening the Serial Monitor.

The output value from the analog port of Arduino can be converted to the corresponding resistance using the formula: \[ R = \frac{(1023 - \text{sensorValue}) \times 10}{\text{sensorValue}} \].

5.2 With **Raspberry Pi**

1. You should have got a raspberry pi and a grovepi or grovepi+.
2. You should have completed configuring the development environment, otherwise follow [here](#).
3. Connection. Plug the sensor to grovepi socket D4 by using a grove cable.
4. Navigate to the demos' directory:
   
   ```
   cd yourpath/GrovePi/Software/Python/
   ```

To see the code
import time
import grovepi

# Connect the Grove Thumb Joystick to analog port A0

# GrovePi Port A0 uses Arduino pins 0 and 1
# GrovePi Port A1 uses Arduino pins 1 and 2
# Don't plug anything into port A1 that uses pin 1
# Most Grove sensors only use 3 of their 4 pins, which is why the GrovePi
# shares Arduino pins between adjacent ports
# If the sensor has a pin definition SIG,NC,VCC,GND, the second (white)
# pin is not connected to anything

# If you wish to connect two joysticks, use ports A0 and A2 (skip A1)

# Uses two pins - one for the X axis and one for the Y axis
# This configuration means you are using port A0
xPin = 0
yPin = 1

grovepi.pinMode(xPin, "INPUT")
grovepi.pinMode(yPin, "INPUT")

# The Grove Thumb Joystick is an analog device that outputs analog signal
# ranging from 0 to 1023
# The X and Y axes are two ~10k potentiometers and a momentary push
# button which shorts the x axis

# My joystick produces slightly different results to the specifications
# found on the url above
# I've listed both here:

# Specifications
# Min Typ Max Click
# X 206 516 798 1023
# Y 203 507 797

# My Joystick
# Min Typ Max Click
# X 253 513 766 1020-1023
# Y 250 505 769

while True:
try:
    # Get X/Y coordinates
    x = grovepi.analogRead(xPin)
    y = grovepi.analogRead(yPin)

    # Calculate X/Y resistance
    Rx = (float)(1023 - x) * 10 / x
    Ry = (float)(1023 - y) * 10 / y

    # Was a click detected on the X axis?
    click = 1 if x >= 1020 else 0

    print "x =", x, " y =", y, " Rx =", Rx, " Ry =", Ry, " click =", click

    time.sleep(.5)
except IOError:
    print "Error"

5. Run the demo.
sudo python grove_thumb_joystick.py
6. Resources

Grove-Thumb Joystick Eagle File
Analog Joystick Datasheet
7. Support

Ask questions on Seeed Forum.